137. Antiplatelet α-Methylidene-γ-butyrolactones: Synthesis and Evaluation of Quinoline, Flavone, and Xanthone Derivatives

by Tai-Chi Wang, Yeh-Long Chen, and Cherng-Chyi Tzeng*

School of Chemistry, Kaohsiung Medical College, Kaohsiung 807, Taiwan, Republic of China

and Shorong-Shii Liou

Department of Pharmacy, Tajen Juinior College of Pharmacy, Pingtung, Taiwan, Republic of China

and Ya-Ling Chang and Che-Ming Teng

Pharmacological Institute, College of Medicine, National Taiwan University, Taipei 100, Taiwan, Republic of China

(3.VI.96)

As a continuation of our previous studies on the synthesis and antiplatelet activity of coumarin derivatives of α -methylidene- γ -butyrolactones, certain quinoline, flavone, and xanthone derivatives were synthesized and evaluated for antiplatelet activity against thrombin (Thr)-, arachidonic acid (AA)-, collagen (Col)-, and platelet-activating factor (PAF)-induced aggregation in washed rabbit platelets. These compounds were synthesized from quinoline-8-ol, flavon-7-ol, and xanthon-3-ol, respectively, via alkylation and Reformatsky-type condensation (Schemes 1-3). By the comparison with coumarin α -methylidene- γ -butyrolactone **3a**, flavone and xanthone derivatives, **3b** and **3c**, respectively, are more selective in which only AA- and collagen-induced aggregation are strongly inhibited. Most of the quinoline derivatives (**9a-e**) exhibited broad-spectrum antiplatelet activities.

Introduction. – A number of natural products bearing an α -methylidene- γ -butyrolactone functionality exhibit wide-ranging biological activities which include antitumoral, bacteriocidal, fungicidal, and anthelminthic properties [1-5]. Recently, we have synthesized certain coumarins and naphthalenes containing α -methylidene- γ -butyrolactones as potential antiplatelet agents [6] [7]. Among them, 7-[(2,3,4,5-tetrahydro-4-methylidene-5oxo-2-phenylfuran-2-yl)methoxy]-2H-1-benzopyran-2-one (3a) and its 4-substituted counterpart have shown potent and broad-spectrum antiplatelet effects in which thrombin (Thr)-, arachidonic acid (AA)-, collagen (Col)-, and platelet-activating factor (PAF)-induced aggregation of rabbit platelets were inhibited. To determine the effect of structural modification with respect to the optimal antiplatelet activity, we have synthesized analogs of 3a in which coumarin (= 2H-1-benzopyran-2-one) moiety was replaced by flavone (=4H-1-benzopyran-4-one) and xanthone (=9H-xanthen-9-one) to increase the lipophilic property of α -methylidene- γ -butyrolactones and thus increase their penetration into the target sites of platelets. The flavonoids are a ubiquitous family of phytochemicals that possess a wide variety of biological activities. A number of natural and synthetic xanthones were also found to exhibit antiplatelet activity [8-11]. On the other hand, the hydrophilic analogs of 3a were synthesized in which coumarin was replaced by quinoline, a constituent of many therapeutical drugs such as antimalarial agents. Their antiplatelet structure-activity relationships are also discussed.

Results and Discussion. – The preparation of $aryl-\alpha$ -methylidene- γ -butyrolactones **3a–c** is illustrated in *Scheme 1*. Alkylation of **1a–c** with 2-bromoacetophenone under basic conditions afforded 2-(aryloxy)acetophenones **2a–c** which were then reacted with ethyl 2-(bromomethyl)acrylate and Zn powder in dry THF (*Reformatsky*-type condensation) to give the target compounds **3a–c** in 47–75% overall yield.

Since 4- and 8-substituted quinolines constitute many chemotherapeutical drugs such as antimalarial agents, chloroquine and primaquine, respectively, both quinolin-4-ol (4) and quinolin-8-ol (7) were chosen as starting materials. Compound 4 was treated with K_2CO_3 and 2-bromoacetophenone in dry DMF (*Scheme 2*). The product thus obtained was 1-(2-oxo-2-phenylethyl)quinolin-4-one (6a) but not 4-(2-oxo-2-phenylethoxy)-quinoline (5a) based on the ¹H, ¹³C heteronuclear-correlation (HETCOR) NMR experiments. The singlet $C(1')H_2$ protons (δ at 6.06 ppm) were clearly coupled to C-atoms with resonances of 140.69 (³J), 145.24 (³J), and 193.37 (²J) corresponding to C(8a), C(2), and C(2'), respectively. Besides aromatic protons resonated at 7.34–8.25 ppm, there are two *doublet* peaks (J = 7.6 Hz) appeared at 6.15 and 7.95 ppm. The downfield peak (δ 7.95) in coupling with C(8a) (140.69, ³J), C(2) (145.24, ¹J), and C(4) (176.62, ³J) was assigned to H–C(2) and the upfield peak (δ 6.15) assigned to H–C(3). The *N*- but not *O*-alkylation was also observed when the alkylating agent was bromoacetone, and 1-(2-oxo-propyl)quinolin-4-one (6b) was obtained. Attempts to achieve the *Reformatsky*-type

condensation of **6** under different reaction conditions were not successful. However, treatment of **7** with K_2CO_3 and 2-bromoacetophenone in dry THF afforded 8-(2-oxo-2-phenylethoxy)quinoline (**8a**), an O-alkylated product (*Scheme 3*). The structure of **8a** was determined through the ¹H, ¹³C heteronuclear-correlation NMR experiments in which the *singlet* C(1')H₂ protons (δ at 5.65 ppm) were clearly coupled to C-atoms with resonances of 153.82 (³J) and 194.43 (²J) corresponding to C(8) and C(2'), respectively. *Reformatsky*-type condensation of **8a** gave the desired 8-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinoline (**9a**) in 75% yield. Accordingly, compounds **9b–f** were prepared from **7** *via* O-alkylation and *Reformatsky*-type condensation in good overall yield.

The antiplatelet activities of α -methylidene- γ -butyrolactones were evaluated in washed rabbit platelets. Platelet aggregation was induced by thrombin (Thr, 0.1 U/ml), arachidonic acid (AA, 100 μ M), collagen (Col, 10 μ g/ml), and platelet-activating factor (PAF, 2 nM). The final concentration of test compounds was $100 \mu g/ml$, and the results are shown in Table 1. Compound **3a** inhibited the platelet aggregation caused by four inducers, while its flavone and xanthone analogs, 3b and 3c, respectively, inhibited AAand Col-induced platelet aggregation completely, and those by thrombin and PAF partially. The compound 9a and its 2-Me counterpart 9b exhibited potent and broadspectrum antiplatelet effects in which Thr-, AA-, Col-, and PAF-induced platelet aggregation were inhibited. Significant antiplatelet activities were also observed when the 2-Ph group of **9a** was replaced by a 4-Cl-, 4-Br-, or 4-MeO-substituted phenyl group (see 9c-e). However, a 4-Ph-substituted phenyl substituent (9f) decreased antiplatelet spectrum in which only AA- and Col-induced aggregation were inhibited. The inhibitory concentrations for 50% aggregation (IC_{s0}) induced by AA and PAF are given in Table 2. The coumarin derivative 3a showed the most significant antiplatelet effects on AA- and PAF-induced platelet aggregation, while its flavone and xanthone counterparts, 3b and 3c, respectively, were more selective. The quinoline derivative 9a possessing a 2-Ph substituent was more active than its 2-Me counterpart 9b. The poor inhibitory potency of 9f against PAF-induced platelet aggregation implies that a bulky substituent at aromatic benzene reduced its antiplatelet potency. In contrary, 9a and 9c are two of the best.

	Aggregation [%]				
	Thr (0.1 U/ml)	АА (100 µм)	Col (10 µg/ml)	PAF (2nм)	
Control	92.8 ± 1.5	87.2 ± 1.0	88.8 ± 1.5	90.3 ± 1.6	
3a	0 ^b) ^c)	0	0	0	
3b	$65.6 \pm 9.3^{\rm d}$)	0	0	$36.8 \pm 4.2^{\circ}$)	
3c	$81.7 \pm 3.7^{\rm d}$)	0	0	$70.3 \pm 4.1^{\circ}$)	
9a	0	0	0	0	
9b	$17.4 \pm 7.9^{\circ}$)	. 0	0	0	
9c	0	0	0	0	
9d	0	0	0	0	
9e	0	0	0	0	
9f	$70.5 \pm 4.1^{\circ}$)	0	0	$78.0 \pm 1.6^{\circ}$)	
Aspirin	91.9 ± 1.4	0	85.4 ± 3.9	90.5 ± 1.2	

Table 1. Effect of α -Methylidene- γ -butyrolactones on the Platelet Aggregation Induced by Thrombin (Thr), Arachidonic Acid (AA), Collagen (Col), and Platelet-Activating Factor (PAF) in Washed Rabbit Platelets^a)

^a) Platelets were preincubated with DMSO (0.5%, control), aspirin (10 μ g/ml), or α -methylidene- γ -butyrolactones (100 μ g/ml) at 37° for 3 min, and the inducer was then added. Percentages of aggregation are presented as means \pm standard errors of the mean (n = 3-7).

^b) Complete inhibition in all experiments.

^c) Significantly different from control value at p < 0.001.

^d) Significantly different from control value at p < 0.01.

	AA	PAF	
 3a	3.7	16.4	
3Ь	6.1	> 200	
3c	18.5	> 200	
9a	14.2	33.6	
9Ь	88.9	177.9	
9c	17.3	33.9	
9d	19.1	60.0	
9e	41.9	128.3	
9f	25.4	> 200	

Table 2. IC₅₀ Values (μ M) of α -Methylidene- γ -butyrolactones on the Platelet Aggregation Induced by AA and PAF

As a result of these studies, compound **3a** was found to possess broad and potent *in vitro* antiplatelet activity. Its lipophilic flavone and xanthone analogs, **3b** and **3c**, respectively, were less active in potency but were more selective. The hydrophilic quinoline analogs **9a–f** were also less active than **3a** in the inhibitory potency against platelet aggregation induced by Thr, AA, Col, and PAF.

We gratefully acknowledge financial support from the National Science Council of the Republic of China.

Experimental Part

General. TLC: precoated (0.2 mm) silica gel 60 F-254 plates from EM Laboratories, Inc.; detection by UV light (254 nm). M.p.: YANACO micromelting-point apparatus; uncorrected. UV Spectra ($\lambda_{max}(\log \varepsilon)$ in nm): Beckman UV-VIS spectrophotometer. ¹H- and ¹³C-NMR spectra: Varian-Gemini-200 spectrometer, chemical shifts δ in ppm with Me₄Si as an internal standard. Elemental analyses were carried out on a Heraeus CHN-O-Rapid elemental analyzer and results were within $\pm 0.4\%$ of theoretical values.

HELVETICA CHIMICA ACTA - Vol. 79 (1996)

7-[2-Oxo-2-phenylethoxy]-2-phenyl-4H-1-benzopyran-4-one (**2b**). Flavon-7-ol (**1b**) (1.19 g, 5 mmol), K₂CO₃ (0.69 g, 5 mmol), and dry DMF (40 ml) were stirred at r.t. for 30 min. To this soln. was added 2-bromoaceto-phenone (1.00 g, 5 mmol) in dry DMF (10 ml) in one portion. The resulting mixture was continued to stir at r.t. for 12 h (TLC monitoring) and then poured into ice-water (100 ml). The pale-yellow solid thus obtained was collected and crystallized from CH₂Cl₂/Et₂O 1:10: **2b** (0.99 g, 73%). Pale-yellow needle crystals. M.p. 174–175°. ¹H-NMR (CDCl₃): 5.45 (*s*, 2 H–C(1')); 6.75 (*s*, H–C(3)); 6.98–8.17 (*m*, 13 arom. H). ¹³C-NMR (CDCl₃): 70.77 (C(1')); 101.78, 109.59, 114.48, 118.56, 126.21, 127.40, 128.12, 128.47, 128.68, 129.03, 131.47, 134.19, 134.27, 157.77, 162.47, 163.18 (arom. C); 177.71 (C(4)); 193.12 (C(2')). Anal. calc. for C₂₃H₁₆O₄: C 77.51, H 4.53; found: C 77.15, H 4.57.

3-(2-Oxo-2-phenylethoxy)-9H-xanthen-9-one (2c). Prepared by the same procedure as described for 2b: 97% yield. M.p. 174–175°. ¹H-NMR (CDCl₃): 5.43 (s, 2 H–C(1')); 6.87–8.33 (m, 12 arom. H). ¹³C-NMR (CDCl₃): 70.74 (C(1')); 101.51, 113.31, 116.52, 117.72, 121.94, 123.96, 126.68, 128.11, 128.61, 129.04, 134.22, 134.26, 134.42, 156.21, 157.84, 163.32 (arom. C); 176.21 (C(9)); 193.10 (C(2')). Anal. calc. for $C_{21}H_{14}$ ·0.2 H_2O : C 75.52, H 4.35; found: C 75.78, H 4.31.

2-Phenyl-7-[(2,3,4,5-tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]-4H-1-benzopyran-4-one (**3b**). To a soln. of **2b** (1.07 g, 3 mmol) in dry THF (60 ml) were added activated Zn powder (0.26 g, 3.9 mmol), hydroquinone (6 mg), and ethyl 2-(bromomethyl)acrylate (0.78 g, 4 mmol). The mixture was refluxed under N₂ atmosphere for 6 h (TLC monitoring). After cooling, it was poured into an ice-cold 5% HCl soln. (300 ml) and extracted with CH₂Cl₂ (3 × 60 ml). The CH₂Cl₂ extracts were combined and washed with H₂O, dried (Na₂SO₄), and then evaporated to give a brown solid which was purified by column chromatography on silica gel using CH₂Cl₂ to afford a residual solid which was crystallized from CH₂Cl₂/Et₂O 1:10: **3b** (0.82 g, 64%). M.p. 190–191°. UV: 250 (4.25), 305 (4.34; 0.1N HCl/MeOH); 251 (4.23), 305 (4.33) (MeOH); 305 (4.35; 0.1N NaOH/MeOH). ¹H-NMR (CDCl₃): 3.26 (*dt*, *J* = 17.0, 2.9, 1 H–C(3')); 3.69 (*dt*, *J* = 17.0, 2.5, 1 H–C(3')); 4.27 (*AB* type, CH₂O); 5.73 (*t*, *J* = 2.5, 1 H, CH₂=C(4')); 6.34 (*t*, *J* = 2.8, 1 H, CH₂=C(4')); 6.75 (*s*, H–C(3)); 6.91–8.14 (*m*, 13 arom. H). ¹³C-NMR (CDCl₃): 37.33 (C(3')); 74.56 (CH₂O); 83.78 (C(2')); 101.63, 107.57, 114.36, 118.53, 122.03, 125.08, 126.16, 127.36, 128.78, 128.93, 129.02, 131.51, 131.72, 134.58, 139.91, 157.71, 162.37, 163.15 (arom. C); 169.05 (C(5')); 177.68 (C(4)). Anal. calc. for C₂₇H₂₀O₅: C 76.40, H 4.75; found: C 76.13, H 4.80.

3-[(2,3,4,5-Tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]-9H-xanthen-9-one (3c). Prepared by the same procedure as described for 3b: 77 % yield. M.p. 160–161°. UV: 235 (sh, 4.62), 265 (4.05), 298 (4.19; 0.1N HCl/MeOH); 235 (sh, 4.64), 266 (4.08), 297 (4.22; MeOH); 265 (4.27), 298 (4.25; 0.1N NaOH/MeOH). ¹H-NMR (CDCl₃): 3.25 (dt, J = 16.9, 2.9, 1 H–C(3')); 3.68 (dt, J = 16.9, 2.5, 1 H–C(3')); 4.26 (*AB* type, CH₂O); 5.72 (t, J = 2.6, 1 H, CH₂=C(4')); 6.33 (t, J = 2.9, 1 H, CH₂=C(4')); 6.82–8.33 (m, 12 arom. H). ¹³C-NMR (CDCl₃): 37.35 (C(3')); 74.47 (CH₂O); 83.79 (C(2')); 101.34, 113.20, 116.47, 117.72, 121.91, 122.02, 124.00, 125.08, 126.67, 128.54, 128.77, 128.93, 134.44, 134.59, 139.92, 156.18, 157.79, 163.25 (arom. C); 169.06 (C(5')); 176.19 (C(9)). Anal. calc. for C₂₅H₁₈O₅: C 75.37, H 4.55; found: C 75.30, H 4.60.

1-(2-Oxo-2-phenylethyl)quinolin-4-one (**6a**). Quinolin-4-ol (1.45 g, 10 mmol), K_2CO_3 (1.37 g, 10 mmol), and dry DMF (50 ml) were stirred at r.t. for 30 min. To this soln. was added 2-bromoacetophenone (1.99 g, 10 mmol) in dry DMF (10 ml) in one portion. The resulting mixture was stirred at r.t. for 24 h (TLC monitoring) and then poured into ice-water (100 ml). The pale-yellow solid thus obtained was collected and crystallized from CH₂Cl₂/ Et₂O 1:10: **6a** (2.21 g, 84%). M.p. 219–220°. ¹H-NMR (DMSO): 6.06 (*s*, 2 H–C(1')); 6.15 (*d*, *J* = 7.6, H–C(3)); 7.95 (*d*, *J* = 7.6, H–C(2)); 7.34–8.25 (*m*, 9 arom. H). ¹³C-NMR (DMSO): 57.94 (C(1')); 109.08 (C(3)); 116.72, 123.22, 125.58, 126.43, 128.22, 128.95, 131.96, 134.22, 134.28 (arom. C); 140.69 (C(8a)); 145.24 (C(2)); 176.62 (C(4)); 193.37 (C(2')). Anal. calc. for C₁₇H₁₃NO₂: C 77.55, H 4.98, N 5.32; found: C 77.55, H 5.03, N 5.35.

1-(2-Oxopropyl)quinolin-4-one (**6b**). From bromoacetone as described for **6a**: 75% yield. M.p. 161–162°. ¹H-NMR (DMSO): 2.29 (*s*, Me); 5.32 (*s*, 2 H–C(1')); 6.10 (*d*, J = 7.6, H–C(3)); 7.81 (*d*, J = 7.6, H–C(2)); 7.33–8.21 (*m*, 4 arom. H). ¹³C-NMR (DMSO): 27.02 (C(3')); 60.46 (C(1')); 108.91 (C(3)); 116.69, 123.26, 125.55, 126.32, 131.94 (arom. C); 140.48 (C(8a)); 144.98 (C(2)); 176.55 (C(4)); 202.36 (C(2')). Anal. calc. for C₁₂H₁₁NO₂: C 71.62, H 5.51, N 6.96; found: C 71.47, H 5.57, N 7.03.

8-(2-Oxo-2-phenylethoxy) quinoline (8a). Quinolin-8-ol (7; 0.73 g, 5 mmol), K_2CO_3 (0.69 g, 5 mmol), and dry DMF (40 ml) were stirred at r.t. for 30 min. To this soln. was added 2-bromoacetophenone (1.0 g, 5 mmol) in dry DMF (10 ml) in one portion. The resulting mixture was stirred at r.t. for 24 h (TLC monitoring) and then poured into ice-water (100 ml). The pale-yellow solid thus obtained was collected and crystallized from CH₂Cl₂/Et₂O (1:10): 8a (0.91 g, 69%). Pale-yellow needle crystals. M.p. 124–125°. ¹H-NMR (CDCl₃): 5.65 (*s*, 2 H–C(1')); 6.95–8.97 (*m*, 11 arom. H). ¹³C-NMR (CDCl₃): 71.85 (C(1')); 110.09, 120.81, 121.72, 126.41, 128.17, 128.84, 129.60, 133.88, 134.53, 135.93, 140.24, 149.41 (arom. C); 153.82 (C(8)); 194.43 (C(2')). Anal. calc. for C₁₇H₁₃NO₂: C 77.55, H 4.98, N 5.32; found: C 77.59, H 4.97, N 5.37.

8-(2-Oxopropoxy)quinoline (8b). From bromoacetone as described for 8a: 67% yield. M.p. 58–59°. ¹H-NMR (CDCl₃): 2.32 (*s*, Me); 4.88 (*s*, 2 H–C(1')); 6.88–8.97 (*m*, 6 arom. H). ¹³C-NMR (CDCl₃): 26.46 (C(3')); 74.13 (C(1')); 109.51, 121.03, 121.90, 126.46, 129.69, 136.02, 140.12, 149.53 (arom. C); 153.69 (C(8)); 206.21 (C(2')). Anal. calc. for $C_{12}H_{11}NO_2$ 2 H₂O: C 60.75, H 6.37, N 5.90; found: C 60.80, H 6.33, N 5.90.

8-[2-(4-Chlorophenyl)-2-oxoethoxy]quinoline (8c). From 2-bromo-4'-chloroacetophenone as described for 8a: 76% yield. M.p. 111–112°. ¹H-NMR (CDCl₃): 5.56 (s, 2 H–C(1')); 6.96–8.96 (m, 10 arom. H). ¹³C-NMR (CDCl₃): 72.23 (C(1')); 110.30, 121.05, 121.77, 126.40, 129.14, 129.64, 129.83, 132.88, 135.95, 140.26, 140.35, 149.47, 153.71 (arom. C); 193.96 (C(2')). Anal. calc. for $C_{17}H_{12}CINO_2$: C 68.58, H 4.06, N 4.70; found: C 68.54, H 4.08, N 4.77.

8-[2-(4-Bromophenyl)-2-oxoethoxy]quinoline (8d). From 2-bromo-4'-bromoacetophenone as described for 8a: 75% yield. M.p. 109–110°. ¹H-NMR (CDCl₃): 5.55 (*s*, 2 H–C(1')); 6.96–8.96 (*m*, 10 arom. H). ¹³C-NMR (CDCl₃): 72.20 (C(1')); 110.30, 121.06, 121.77, 126.39, 129.13, 129.64, 129.89, 132.13, 133.26, 135.95, 140.23, 149.46, 153.68 (arom. C); 194.18 (C(2')). Anal. calc. for $C_{17}H_{12}BrNO_2 0.5 H_2O$: C 58.14, H 3.73, N 3.99; found: C 57.89, H 3.81, N 4.03.

8-[2-(4-Methoxyphenyl)-2-oxoethoxy]quinoline (8e). From 2-bromo-4'-methoxyacetophenone as described for 8a: 89% yield. M.p. 121–122°. ¹H-NMR (CDCl₃): 3.86 (*s*, MeO); 5.56 (*s*, 2 H–C(1')); 6.92–8.97 (*m*, 10 arom. H). ¹³C-NMR (CDCl₃): 55.43 (Me); 71.86 (C(1')); 109.99, 113.94, 120.60, 121.61, 126.39, 127.60, 129.53, 130.60, 135.81, 140.25, 149.33, 153.92, 164.00 (arom. C); 193.11 (C(2')). Anal. calc. for C₁₈H₁₅NO₃: C 73.70, H 5.16, N 4.78; found: C 73.67, H 5.17, N 4.81.

8-[2-Oxo-2-(4-phenylphenyl)ethoxy]quinoline (8f). From 2-bromo-4'-phenylacetophenone as described for 8a: 73% yield. M.p. 135–136°. ¹H-NMR (CDCl₃): 5.66 (s, 2 H–C(1')); 6.99–8.98 (m, 15 arom. H). ¹³C-NMR (CDCl₃): 72.07 (C(1')); 110.16, 120.80, 121.68, 126.40, 127.24, 127.40, 128.34, 128.84, 128.94, 129.61, 133.22, 135.87, 139.67, 140.29, 146.50, 149.40, 153.88 (arom. C); 194.21 (C(2')). Anal. calc. for $C_{23}H_{17}NO_2$: C 81.39, H 5.05, N 4.13; found: C 81.15, H 5.11, N 4.13.

8-[(2,3,4,5-Tetrahydro-4-methylidene-5-oxo-2-phenylfuran-2-yl)methoxy]quinoline (9a). To a soln. of 8a (0.79 g, 3 mmol) in dry THF (60 ml) were added activated Zn powder (0.26 g, 3.9 mmol), hydroquinone (6 mg), and ethyl 2-(bromomethyl)acrylate (0.78 g, 4 mmol). The mixture was refluxed under N₂ atmosphere for 6 h (TLC monitoring). After cooling, it was poured into an ice-cold 5% HCl soln. (300 ml), neutralized with 1.0N NaHCO₃, and extracted with CH₂Cl₂ (3 × 60 ml). The CH₂Cl₂ extracts were combined and washed with H₂O, dried (Na₂SO₄), and then evaporated to give a residual solid which was crystallized from a mixed solvent of CH₂Cl₂/Et₂O 1:10: 9a (0.75 g, 75%). M.p. 101–102°. UV: 250 (4.69; 0.1N HCl/MeOH); 237 (4.62; MeOH); 237 (4.67; 0.1N NaOH/MeOH). ¹H-NMR (CDCl₃): 3.25 (*dt*,*J*= 16.8, 2.8, 1 H–C(3')); 4.09 (*dt*,*J*= 16.9, 2.6, 1 H–C(3')); 4.54 (*AB*type, CH₂O); 5.68 (*t*,*J*= 2.6, 1 H, CH₂=C(4')); 6.25 (*t*,*J*= 2.9, 1 H, CH₂=C(4')); 7.16–8.90 (*m*, 11 arom. H). ¹³C-NMR (CDCl₃): 37.31 (C(3')); 76.68 (CH₂O); 85.08 (C(2')); 113.49, 121.45, 121.64, 121.88, 125.20, 126.55, 128.30, 128.64, 129.62, 134.89, 135.82, 140.70, 141.06, 149.31, 154.73 (arom. C); 169.48 (C(5')). Anal. calc. for C₂₁H₁₇NO₃: C 76.11, H 5.17, N 4.23; found: C 76.10, H 5.19, N 4.27.

The same procedure was used to convert each of the compounds $\mathbf{8b}$ g to $\mathbf{9b}$ g, respectively. Compounds $\mathbf{9b}$ was obtained as a residual oil which was purified by column chromatography on silica gel using CH₂Cl₂.

8-[(2,3,4,5-Tetrahydro-2-methyl-4-methylidene-5-oxofuran-2-yl)methoxy]quinoline (9b). Yield: 82%. UV: 250 (4.69; 0.1N HCl/MeOH); 237 (4.60; MeOH); 238 (4.64; 0.1N NaOH/MeOH). ¹H-NMR (CDCl₃): 1.64 (*s*, Me); 2.84 (*dt*, J = 17.2, 2.8, 1 H–C(3')); 3.48 (*dt*, J = 17.2, 2.6, 1 H–C(3')); 4.29 (*AB* type, CH₂O); 5.66 (*t*, J = 2.5, 1 H, CH₂=C(4')); 6.26 (*t*, J = 2.9, 1 H, CH₂=C(4')); 7.13–8.91 (*m*, 6 arom. H). ¹³C-NMR (CDCl₃): 24.33 (Me); 36.81 (C(3')); 74.86 (CH₂O); 82.18 (C(2')); 112.11, 121.28, 121.53, 122.36, 126.56, 129.62, 135.31, 135.89, 140.77, 149.36, 154.62 (arom. C); 169.69 (C(5')). Anal. calc. for C₁₆H₁₅NO₃·0.125 H₂O: C 70.77, H 5.66, N 5.16; found: C 70.80, H 5.75, N 5.08.

8-{ $[2-(4-Chlorophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy}quinoline (9c). Yield: 63%. M.p. 107–108°. UV: 249 (4.75; 0.1N HCl/MeOH); 236 (4.69; MeOH); 238 (4.28; 0.1N NaOH/MeOH). ¹H-NMR (CDCl₃): 3.20 ($ *dt*, <math>J = 16.9, 2.6, 1 H-C(3')); 4.06 (*dt*, J = 16.9, 2.6, 1 H-C(3')); 4.42 (*AB* type, CH₂O); 5.70 (*t*, J = 2.5, 1 H, CH₂=C(4')); 6.28 (*t*, J = 2.9, 1 H, CH₂=C(4')); 7.13–8.91 (*m*, 10 arom. H). ¹³C-NMR (CDCl₃): 37.43 (C(3')); 76.39 (CH₂O); 84.46 (C(2')); 113.40, 121.56, 121.80, 122.47, 126.56, 126.81, 128.82, 129.66, 134.35, 134.45, 135.89, 139.30, 141.02, 149.40, 154.57 (arom. C); 169.24 (C(5')). Anal. calc. for C₂₁H₁₆ClNO₃: C 68.95, H 4.41, N 3.83; found: C 68.91, H 4.44, N 3.87.

8-{[2-(4-Bromophenyl)-2,3,4,5-tetrahydro-4-methylidene-5-oxofuran-2-yl]methoxy}quinoline (9d). Yield: 58%. M.p. 123-124°. UV: 250 (4.68; 0.1N HCl/MeOH); 236 (4.66; MeOH); 238 (4.55; 0.1N NaOH/MeOH). ¹H-NMR (CDCl₃): 3.20 (dt, J = 17.0, 2.8, 1 H-C(3')); 4.06 (dt, J = 17.0, 2.5, 1 H-C(3')); 4.49 (AB type, CH₂O); 5.70 (t, J = 2.5, 1 H, CH₂=C(4')); 6.28 (t, J = 2.9, 1 H, CH₂=C(4')); 7.13–8.91 (m, 10 arom. H). ¹³C-NMR

 $(CDCl_3)$: 37.36 (C(3')); 76.26 (CH_2O) ; 84.44 (C(2')); 113.37, 121.53, 121.78, 122.48, 126.53, 127.09, 129.63, 131.75, 134.37, 135.86, 139.81, 140.98, 149.37, 154.53 (arom. C); 169.19 (C(5')). Anal. calc. for $C_{21}H_{16}BrNO_3$: C 61.48, H 3.93, N 3.41; found: C 61.32, H 3.96, N 3.43.

8-{[2,3,4,5-Tetrahydro-2-(4-methoxyphenyl)-4-methylidene-5-oxofuran-2-yl]methoxy}quinoline (9e). Yield: 56%. M.p. 125–126°. UV: 250 (4.29; 0.1N HCl/MeOH); 236 (4.37; MeOH); 238 (4.18; 0.1N NaOH/MeOH). ¹H-NMR (CDCl₃): 3.22 (dt, J = 16.9, 2.8, 1 H-C(3')); 3.81 (s, MeO); 4.05 (dt, J = 16.8, 2.6, 1 H-C(3')); 4.50 (AB type, CH₂O); 5.67 (t, J = 2.5, 1 H, CH₂=C(4')); 6.24 (t, J = 2.8, 1 H, CH₂=C(4')); 6.90–8.90 (m, 10 arom. H). ¹³C-NMR (CDCl₃): 37.34 (C(3')); 55.33 (MeO); 76.67 (CH₂O); 85.02 (C(2')); 113.35, 114.01, 121.48, 121.59, 121.89, 126.58, 129.64, 132.73, 135.06, 135.84, 141.08, 149.35, 154.77, 159.52 (arom. C); 169.60 (C(5')). Anal. calc. for C₂₂H₁₉NO₄: C 73.11, H 5.30, N 3.88; found: C 73.08, H 5.34, N 3.92.

8-{[2,3,4,5-Tetrahydro-4-methylidene-5-oxo-2-(4-phenylphenyl)furan-2-yl]methoxy}quinoline (9f). Yield: 65%. M.p. 154–155°. UV: 251 (4.88; 0.1N HCl/MeOH); 238 (4.86; MeOH); 240 (4.71; 0.1N NaOH/MeOH). ¹H-NMR (CDCl₃): 3.29 (dt, J = 16.9, 2.8, 1 H-C(3')); 4.11 (dt, J = 16.9, 2.6, 1 H-C(3')); 4.57 (AB type, CH₂O); 5.70 (t, J = 2.5, 1 H, CH₂=C(4')); 6.28 (t, J = 2.8, 1 H, CH₂=C(4')); 7.19–8.92 (m, 15 arom. H). ¹³C-NMR (CDCl₃): 37.35 (C(3')); 76.57 (CH₂O); 85.02 (C(2')); 113.43, 121.49, 121.66, 122.09, 125.73, 126.57, 127.08, 127.35, 127.57, 128.82, 129.63, 134.82, 135.85, 139.63, 140.29, 141.05, 141.27, 149.35, 154.71 (arom. C); 169.50 (C(5')). Anal. calc. for C₂₇H₂₁NO₃: C 79.59, H 5.20, N 3.44; found: C 79.53, H 5.25, N 3.50.

Pharmacological Evaluation. Reagents: Collagen (type I, bovine Achilles tendon) obtained from *Sigma Chem.* Co. was homogenized in 25 mM AcOH and stored (1 mg/ml) at -70° . Platelet-activating factor (PAF) was purchased from *Calbiochem-Behring Co.* and dissolved in CHCl₃. Arachidonic acid (AA), EDTA, and bovine serum albumin were purchased from *Sigma Chem. Co.*

Platelet Aggregation. Blood was collected from the rabbit marginal ear vein, anticoagulated with EDTA (6 mM) and centrifuged for 10 min at 90 × g and r.t. Platelet suspension was prepared from this EDTA-anticoagulated platelet-rich plasma according to the washing procedures described in [12]. Platelet numbers were counted with a *Coulter* counter (Model *ZM*) and adjusted to 4.5×10^8 platelets/ml. The platelet pellets were finally suspended in *Tyrode*'s soln. of the following composition (mM): NaCl (136.8), KCl (2.8), NaHCO₃ (11.9), MgCl₂ (2.1), NaH₂PO₄ (0.33), CaCl₂ (1.0), and glucose (11.2), containing bovine serum albumin (0.35%). The platelet suspension was stirred at 1200 rpm and the aggregation was measured at 37° by the turbidimetric method as described by *O'Brien* [13] using a *Chrono-Log Lumi-aggregometer*. To eliminate the effect of the solvent on the aggregation, the final concentration of DMSO was fixed at 0.5%. Percentage of aggregation was calculated using the absorbance of platelet suspension as 0% aggregation and the absorbance of *Tyrode*'s soln. as 100% aggregation, *IIC* from computerization of *CA-Cricket Graph III* for five or six dose-effect levels.

REFERENCES

- K. H. Lee, I. H. Hall, E. C. Mar, C. O. Starnes, S. A. Elgebaly, T. G. Waddell, R. I. Hadgraft, C. G. Ruffner, I. Weidner, Science 1977, 196, 533.
- [2] N. D. Heindel, J. A. Minatelli, J. Pharm. Sci. 1981, 70, 84.
- [3] H. M. R. Hoffmann, J. Rabe, Angew. Chem. Int. Ed. 1985, 24, 94.
- [4] K. H. Lee, G. K. Rice, I. H. Hall, V. Amarnath, J. Med. Chem. 1987, 30, 586.
- [5] B.R. Huang, K.H. Lee, T.L. Tseng, H. M. Wang, C. F. Chen, C.C. Tzeng, Kaohsiung J. Med. Sci. 1993, 22, 2206.
- [6] Y. L. Chen, T. C. Wang, K. H. Lee, Y. L. Chang, C. M. Teng, C. C. Tzeng, Helv. Chim. Acta 1996, 79, 651.
- [7] Y. L. Chen, T. C. Wang, S. C. Liang, C. M. Teng, C. C. Tzeng, Chem. Pharm. Bull. 1996, in press.
- [8] T.C. Teng, C.N. Lin, F.N. Ko, K.L. Cheng, Biochem. Pharmacol. 1989, 38, 3791.
- [9] C. N. Lin, S. S. Liou, F. N. Ko, C. M. Teng, J. Pharm. Sci. 1993, 82, 11.
- [10] W. Y. Chen, F. N. Ko, C. N. Lin, C. M. Teng, Thromb. Res. 1994, 75, 81.
- [11] C. N. Lin, S. C. Fang, H. C. Lin, F. N. Ko, B.J. Shieh, H. W. Liu, C. M. Teng, J. Pharm. Pharmacol. 1994, 46, 917.
- [12] S.C. Kuo, C.M. Teng, J.G. Lee, F.N. Ko, S.C. Chen, T.S. Wu, Planta Med. 1990, 56, 164.
- [13] J. R. O'Brien, J. Clin. Pathol. 1962, 15, 452.